DESIGN AND IMPLEMENTATION OF INTERNET OF THINGS (IOT)-BASED AUTOMATED TOMATO WATERING SYSTEM
JETI Admin
Abstract
The paper focuses on the
development of Population Forecasting using the Natural Growth Model of
Ordinary Differential Equation of First Order of Scipy Python, specifically for
the Delta State Population Census 2006. The study compares manual estimation
integration methods results with the Python Scipy library and visualizes
population predictions using graphs and bar charts. The Average performance
accuracy of 98 percent of the prediction of Delta State Population Model of
Natural Growth Model of Ordinary Differential Equation of First Order of Scipy
Python
References
[1] Atajeromavwo E. J., Nwabudike A. A., Osazuwa L.O., and Akazue E. C.D. “Comparative Analysis of Population Model Using Discrete and Natural Growth Model”: Case Study of Delta State Polytechnic, Ogwashi Uku, Nigeria. Journal of the Nigerian Association of Mathematical Physics, Vol.67(July to September 2021 Issues) Pp23-30, 2021
[2] Booth H., “Demographic forecasting: 1980 to 2005 in review”. International Journal of Forecasting, 22(3), 547–581, 2006. doi:10.1016/j.ijforecast.2006.04
[3] Dudnyk O., and Sokolovska Z. M., “Forecasting development trends in the information technology industry using fuzzy logic”, Eastern-European Journal of Enterprise Technologies, 1(13 (121)):74-85, 2023. doi: 10.15587/1729-4061.2023.267906.
[4] Hare J. A., Alexander M. A., Fogarty M.J. ,Williams E. H., & Scott J. D., “Forecasting the dynamics of a coastal fishery species using a coupled climate–population model. Ecological Applications”, 20(2), 452–464, 2010. doi:10.1890/08-1863.1
[5] Jaatinen K., Westerbom M., Norkko A., Mustonen O., and Koons D. N., “Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels”, Journal of Animal Ecology, 90, 562–573, 2021. https://doi.org/10.1111/1365-2656.13377
[6] Jiayi L., “Exploiting Regressive Model for Population Prediction in China”, Highlights in Science, Engineering and Technology, 39:167-175, 2023. doi: 10.54097/hset.v39i.6520.
[7] Mazzuco S., and Keilman N., “Developments in Demographic Forecasting. The Springer Series on Demographic Methods and Population Analysis” 2020. doi:10.1007/978-3-030-42472-5
[8] Miller D. H., Tietge J. E., McMaster, K. Munkittrick R., Xia v, Griesmer D. A., and Ankley G. T., “Linking mechanistic toxicology to population models in forecasting recovery from chemical stress: A case study from Jackfish Bay”, Ontario, Canada. Environmental Toxicology and Chemistry, 34(7), 1623–1633, 2015, doi:10.1002/etc.2972
[9] Munazilla N., and Farikhin S., “A modified of the generalized fuzzy logical relationship method with high order fuzzy time series based on frequency density partition”, Nucleation and Atmospheric Aerosols 2023, doi: 10.1063 he male population outclassed the 2006 to of male.0105677.
[10] Sameer A., Yusuf I., Okafor U., “An application of time independent fourier amplitude model on forecasting the united state population”, Fudma Journal of Sciences, 6(1):54-59, 2022. doi: 10.33003/fjs-2022-0601-881.
[11] Sanderson W. C., and Scherbov S., “A new perspective on population aging”, Demographic Research, 16, 27–58, 2007. https://doi.org/10.4054/DemRes.2007.16.2.
[12] Sanderson W. C., and Scherbov S., “A unifying framework for the study of population aging”, Vienna Yearbook of Population Research, 2016(14), 7–39, 2017. https://doi.org/10.1553/ populationyearbook2016s007.
[13] Sanderson W. C., and Scherbov S., "Prospective longevity: A new vision of population aging”, Cambridge: Harvard University Press , 2019.
[14] Ward E. JHolmes ., E. E., Thorson J. T., and Collen B., “Complexity is costly: a meta-analysis of parametric and non-parametric methods for short-term population forecasting”. Oikos, 123(6), 652–661, 2014, doi:10.11
[15] Xianfang T., Xianlong C., Ru Z., Yazhao J., “Research and Simulation of Population Forecast Based on BP Neural Network”, 302-305, 2022, doi: 10.1109/EIECT58010.2022.00066.
[16] Zhanarka B., Ibraeva. G., Bektemyssova. A. R., “Fuzzy model for time series forecasting”, Scientific journal of Astana IT University, 93-102, 2023, doi: 10.37943/13eotu7482.
[17] Zylstra E. R. and Zipkin E. F., “Accounting for sources of uncertainty when forecasting population responses to climate change,” Journal of Animal Ecology, vol. 90, no. 3, pp. 558–561, Mar. 2021, doi: 10.1111/1365-2656.13443.